Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Ecol Evol ; 10: 1-16, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38152478

RESUMO

Periphyton assemblages from the nearshore environment of the west (California) side of Lake Tahoe, were analyzed to determine their taxonomic composition and community structure across habitats and seasons. Lake Tahoe is the second deepest lake in the US and an iconic oligotrophic subalpine lake with remarkable transparency. It has experienced offshore cultural eutrophication since the 1960s with observations of nuisance nearshore algal growth since the mid 2000s attributed to anthropogenic stressors. Samplings from November 2019-September 2020 provide useful snapshots against which older monitoring may be contextualized. A voucher flora, complete with descriptions, photo-documentation and referencing to species concepts employed, was created as a method of providing reproducible identification and enumeration of algal species, and more seamless reconciliation of detailed taxonomic data with future monitoring projects. The eulittoral zone (0-2 m) is seasonally dominated by elongate araphid (Synedra, Ulnaria) and stalked or entubed diatoms (Gomphonema, Cymbella, Encyonema). The sublittoral zone (>2 m) is dominated by a nitrogen-fixing Epithemia-cyanobacteria assemblage with less seasonal changes in dominance and composition that expanded to impinge on the 2 m depths of the eulittoral zone in the Fall. Sublittoral epipsammic samples, despite their proximity to rocks, had a very distinct diatom composition and high species dominance, similar to what was seen in the Fall eulittoral samples, with high numbers of Staurosirella chains and small biraphid diatoms. The deeper samples at 30 and 50 m contained high numbers of live Epithemia, and indicate a thriving sublittoral assemblage at these greater depths, but with less biomass. The 2019-20 data show many of the same diatom taxa observed in the 1970's and 1980's but with changes in species dominance. Notably, there was less of the green alga Mougeotia, when compared to the 1970's data, and a higher dominance by nitrogen fixing Epithemia in the sublittoral zone, persisting year-round. These new data show roughly double the algal species biodiversity that had been documented previously in the Lake Tahoe nearshore, and is largely attributed to the methods employed. Adopting these new methods in future monitoring efforts should improve harmonization of taxonomic data and help advance our knowledge of the contributions to nearshore cultural eutrophication.

2.
Commun Biol ; 6(1): 554, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217772

RESUMO

A major premise of ecological neutral theory is that population size is inversely related to extinction risk. This idea is central to modern biodiversity conservation efforts, which often rely on abundance metrics to partially determine species extinction risk. However, limited empirical studies have tested whether extinction is indeed more probable for species with low abundances. Here we use the fossil record of Neogene radiolaria to test the relationship between relative abundance and longevity (time from first to last occurrence). Our dataset includes abundance histories for 189 polycystine radiolarian species from the Southern Ocean, and 101 species from the tropical Pacific. Using linear regression analyses, we show that neither maximum nor average relative abundance are significant predictors of longevity in either oceanographic region. This suggests that neutral theory fails to explain the plankton ecological-evolutionary dynamics we observe. Extrinsic factors are likely more important than neutral dynamics in controlling radiolarian extinction.


Assuntos
Fósseis , Plâncton , Biodiversidade , Evolução Biológica , Extinção Biológica
3.
Curr Biol ; 32(24): 5398-5405.e3, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36538877

RESUMO

Marine tetrapods occupy important roles in modern marine ecosystems and often gather in large aggregations driven by patchy prey distribution,1,2 social or reproductive behaviors,3,4 or oceanographic factors.5 Here, we show that similar grouping behaviors evolved in an early marine tetrapod lineage, documented by dozens of specimens of the giant ichthyosaur Shonisaurus in the Luning Formation in West Union Canyon, Nevada, USA.6,7 A concentration of at least seven skeletons closely preserved on a single bedding plane received the bulk of previous attention. However, many more specimens are preserved across ∼106 square meters and ∼200 stratigraphic meters of outcrop representing an estimated >105-6 years. Unlike other marine-tetrapod-rich deposits, this assemblage is essentially monotaxic; other vertebrate fossils are exceptionally scarce. Large individuals are disproportionately abundant, with the exception of multiple neonatal or embryonic specimens, indicating an unusual demographic composition apparently lacking intermediate-sized juveniles or subadults. Combined with geological evidence, our data suggest that dense aggregations of Shonisaurus inhabited this moderately deep, low-diversity, tropical marine environment for millennia during the latest Carnian Stage of the Late Triassic Period (237-227 Ma). Thus, philopatric grouping behavior in marine tetrapods, potentially linked to reproductive activity, has an antiquity of at least 230 million years.


Assuntos
Ecossistema , Fósseis , Humanos , Recém-Nascido , Filogenia , Oceanografia , Evolução Biológica
4.
Nat Commun ; 11(1): 5069, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093493

RESUMO

Ongoing climate change is predicted to trigger major shifts in the geographic distribution of marine plankton species. However, it remains unclear whether species will successfully track optimal habitats to new regions, or face extinction. Here we show that one significant zooplankton group, the radiolaria, underwent a severe decline in high latitude species richness presaged by ecologic reorganization during the late Neogene, a time of amplified polar cooling. We find that the majority (71%) of affected species did not relocate to the warmer low latitudes, but went extinct. This indicates that some plankton species cannot track optimal temperatures on a global scale as assumed by ecologic models; instead, assemblages undergo restructuring and extinction once local environmental thresholds are exceeded. This pattern forewarns profound diversity loss of high latitude radiolaria in the near future, which may have cascading effects on the ocean food web and carbon cycle.


Assuntos
Mudança Climática/história , Ecossistema , Rhizaria/fisiologia , Zooplâncton/fisiologia , Aclimatação/fisiologia , Animais , Regiões Antárticas , Biodiversidade , Evolução Biológica , Extinção Biológica , História Antiga , Modelos Biológicos , Oceanos e Mares , Oceano Pacífico , Temperatura
5.
Sci Rep ; 8(1): 2138, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391430

RESUMO

Knowledge of the direct role humans have had in changing the landscape requires the perspective of historical and archaeological sources, as well as climatic and ecologic processes, when interpreting paleoecological records. People directly impact land at the local scale and land use decisions are strongly influenced by local sociopolitical priorities that change through time. A complete picture of the potential drivers of past environmental change must include a detailed and integrated analysis of evolving sociopolitical priorities, climatic change and ecological processes. However, there are surprisingly few localities that possess high-quality historical, archeological and high-resolution paleoecologic datasets. We present a high resolution 2700-year pollen record from central Italy and interpret it in relation to archival documents and archaeological data to reconstruct the relationship between changing sociopolitical conditions, and their effect on the landscape. We found that: (1) abrupt environmental change was more closely linked to sociopolitical and demographic transformation than climate change; (2) landscape changes reflected the new sociopolitical priorities and persisted until the sociopolitical conditions shifted; (3) reorganization of new plant communities was very rapid, on the order of decades not centuries; and (4) legacies of forest management adopted by earlier societies continue to influence ecosystem services today.


Assuntos
Arqueologia/história , Mudança Climática/história , Evolução Cultural/história , Ecossistema , Monitoramento Ambiental , Florestas , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , História Medieval , Humanos , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...